If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-24.81x+15=0
a = 4.9; b = -24.81; c = +15;
Δ = b2-4ac
Δ = -24.812-4·4.9·15
Δ = 321.5361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24.81)-\sqrt{321.5361}}{2*4.9}=\frac{24.81-\sqrt{321.5361}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24.81)+\sqrt{321.5361}}{2*4.9}=\frac{24.81+\sqrt{321.5361}}{9.8} $
| F(x)=x-42 | | F(-3)=x-42 | | 3p+6=2p+18 | | 6y-4y=6 | | 80=0.2d+77 | | 9(y-97)=18 | | 2x+5÷3=11 | | 2=h-89/5 | | p+28/7=5 | | |4x-5/7|=3 | | 68=p/3+58 | | 9(u-84)=72 | | 11=23-4u | | -9x-8=-6x+1 | | 3x-6=12x+24 | | 4p-93=2p-35 | | 9u-28=3u+14 | | v+53=5v-23 | | 5v-51=7v-75 | | w=3w-72 | | 10u+2=4u+32 | | 2p=8p-6 | | t=-16H^2+40H+24 | | H(t)=-16t^2+40t+24. | | H(t)=-16t^2+40t+24 | | 5(y+7)+y=2(y+5)+4 | | r+1/2=41/2 | | 4x+1/3x-1+2=0 | | y=8−6(6-1) | | x+1/3=42/3 | | b-3/4=4 | | r+2/3=3 |